

 Navigation

 	
 index

 	
 next |

 	crcache trunk documentation

Welcome to crcache’s documentation!

Contents:

	crcache users guide
	Overview

	Requirements

	Installation

	Configuration

	Command line

	Internals

	API

	Design / Architecture of crcache
	Primary Goals

	Musts

	Secondary Goals

	Problem domain

	Concepts

	Resource Source

	Compute Resource

	Code layout

	Key modules

	External integration

	Developing crcache
	Releases

	Hacking

	Coding style

	Tests

	Copyright

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, crcache contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	crcache trunk documentation

crcache users guide

Overview

crcache acts as a layer to obtain, use, and discard compute resources - be it
virtual machines, chroots or even physical machines. This is a common
requirement for testing environments, and having an abstraction layer allows
a single project setup to scale in dramatically different ways just by the
user reconfiguring their crcache config.

This manual covers both part planned works and implemented works. If something
doesn’t work please file a bug.

Requirements

	Python 2.6+ or 3.2+

	The ‘extras’ Python package.

	For testing a number of other packages (see setup.py).

Installation

Using pip is the easiest way to install crcache:

$ pip install crcache

Configuration

The default configuration is to have a single source local which runs
commands locally.

Search path

Configuration is looked up in ~/.config/crcache and $(pwd)/.crcache. Where
something is defined in both places, the first found definition wins, allowing
local configuration to supercede any configuration supplied in a project (which
might be version controlled and thus harder to change without side effects).

Sources

Each source is a subdirectory of a config root -
$root/sources/$sourcename. Sources define how to provision one or more
compute resources.

A source called local will replace the implicit definition of the local
source.

The file source.conf is a .ini file that controls basic metadata for the
source:

[DEFAULT]
; What sort of source is this?
type=[local|pool|ssh]
; Do not discard instances if less than this many are running.
; Defaults to 0 - avoids caching expensive resources w/out warning.
reserve=int
; Do not scale out beyond this many instances.
; Defaults to 0 - no limit.
maximum=int
; Override the concurrency of returned instances, rather than probing.
; Defaults to 0 - autoprobe.
concurrency=int
; For pools only
sources=sourcename,sourcename,...
; For ssh only
ssh_host=string

If a directory called provision.d exists as a sibling to source.conf then
its contents will be run as they are provisioned (using run-parts). The resource
name is supplied to the scripts as the first parameter - the script can call
crcache run to execute commands on the resource.

Likewise for discard.d immediately before discarding an instance.

Command line

status

Provides details of sources and resources:

$ crcache status
source cached in-use max
local 0 1 1
pool 1 0 1

$ crcache status --query available pool
1

acquire

Checks a compute resource out for use:

$ crcache -s pool acquire
pool-0

$ crcache status pool
source cached in-use max
pool 0 1 1

run

Runs a command on a checked out resource:

$ crcache run pool-0 echo foo
foo

Get a shell on the resource:

$ crcache run pool-0
...

copy

Copies files into (or out of) the resource:

$ crcache cp /tmp/foo pool-0:/tmp

release

Returns a compute resource from use:

$ crcache release pool0
$ crcache status pool
source cached in-use max
pool 1 0 1

Internals

Each source stores the instances it has obtained and has cached in the crcache
store, stored in $HOME/.cache/crcache/state.db.

API

The internal API is largely uninteresting for users - and see the DESIGN and
DEVELOPER documentation if you are interested. That said, one possibly common
need is creating additional source types, and so we cover that here.

Source types are looked up by looking for a python module with the same name
in the cr_cache.source. package namespace. They can be installed as a
third-party using namespace packages, or patched into the main crcache
source tree. Source modules should include a Source class, which the
source type loader looks for - you can subclass source.AbstractSource
or just implement its contract. The loader will instantiate a Source
instance with a ConfigParser and a get_source callback (which permits
sources to layer on other sources).

Sources are responsible for four things:

	Making instances that can run commands.

	Assigning unique (to the crcache instance) ids for the instances.

	Discarding such instances.

	Running commands on the instances.

Other operations, such as enforcing a limit on the number of instances, caching
of instances, are taken care of by crcache infrastructure.

 Copyright 2012, crcache contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	crcache trunk documentation

Design / Architecture of crcache

NB: This document describes intent as much as actuality. The code has
precedence where things differ (though for to-implement features, the code may
simply be not-yet-written).

Primary Goals

	Provide an abstraction layer so that test runners like testrepository or in
general any process that needs to run in isolated or repeatable environments
can do so without needing to re-invent the wheel.

	Make it possible for projects to have project specific config in-tree and
machine/environment specific config maintained on the machine/environment.

Musts

	Be command line drivable (make it easy to use from many languages including
the console).

	Be able to run things locally without any configuration.

	Let users do arbitrary operations to customise compute environment
provisioning / resetting / reuse.

	Not require long lived daemon processes - when not being actively used,
crcache should be gone. [Optional features may require a daemon].

	Be able to organise computing resources - not all things are equal. (No
explict modelling needed - just provide a language for users to differentiate
different resources).

	Be able to copy files in and out of the computing environment. While providing
the basic run-a-command facility is enough to let sftp or rsync work, it is
hard to implement safe temp file handling without a higher level interface.

Secondary Goals

Clean UI, predictable behaviour, small-tools feel.

Problem domain

Consider a generic parallelising test runner and a test suite that uses
machine-scoped resources such as well known ports, database or message queue
servers and fixed paths on disk.

Any attempt to parallelise that test suite will run into significant immediate
problems - the code base will have to be made generic, so that test servers run
on ephemeral ports, so that the test database uses random names (and possibly
still require a mutex on schema operations in different databases... depending
on the database engine) - all predictable resources need to be made unique.
Failing to do that will cause sporadic failures in the test suite when the
parallel execution happens to place contending tests opposite each other. The
greater the parallelism, the worse the issue.

To run the test suite in parallel, it needs to be isolated. The most robust
form of isolation is N separate machines with shared nothing, but thats a lot
of overhead to manage. Virtual machines, containers or chroots offer varying
degrees of less isolation but with correspondingly lower overhead for
management. We can model any of these test environments - local processes,
chroots, containers, VM’s or even separate physical machines with one model.

For efficiency, it would be desirable to minimise repeated work involved with
setting up and tearing down virtualised environments. It is from this aspect
that the cache in the name crcache is drawn. The model needs to be
compatible with sophisticated approaches such as lvm snapshots, golden cloud
images and hot prepped instances.

Concepts

To deal with compute clouds (such as Openstack or EC2) we need to allow for
configuration for a whole class of resources at once. This implies a minimum
of two concepts:

	A source of compute resources.

	Individual resources.

Any given project will have its own configuration to perform on a machine
(e.g. installing dependencies, checking out source code). This could imply a
third concept - Project, but can also be represented as just a layered
source of resources, where the layer consumes from the layer below and performs
whatever configuration is needed.

After configuring a resource for a project, the resource is ready to be used.
To mask latency or avoid repeated work, preparing multiple resources in advance
may be useful, which also argues for a new concept - resource pools.

However, there isn’t (yet) any clear important differentiator between a source
of compute resources and a pool that draws from other sources - we can treat
a pool as just another source. So, like project, pooled resources will exist
but only as a specialised resource source.

It can be argued that sources like EC2 which require credentials and so on
should be given two levels of configuration - global and per-project-binding.
In the interest of minimising concepts, that is not done today.

Some resources can share local file trees very efficiently, e.g. via COW file
systems, bind mounting, bind mounting with layered file sytems, or even cluster
file systems. This offers huge performance benefits when used, so this becomes
a necessary concept:

	Filesystem exporting.

We need to let users run arbitrary code under crcaches control from time to
time, so thats also a necessary concept:

	Extension points.

The lifecycle of a resource, with all optimisations in place, will be something
like:

	Provision, either statically configured or dynamically via some API.
[needs source, produces resource]

	Perform per-project configuration and place into a pool ready for use.
The pool might be a stopped lxc container, or a running but idle cloud
instance.
[needs resource, pool source, produces resource]

	Take it out of the pool and perform per-revision configuration.
[needs pool, produces allocated resource]

	Run some commands on it / copy files to or from it.
[needs allocated resource]

	Reset it to pool-status. This might involve stopping it and doing an lvm
rollback, unmounting an aufs filesystem from a chroot, or doing nothing.
[needs allocated resource, discards resource]

	Repeat 3-5 as needed.

	Unprovision, either dynamically, or by a user removing the configuration
data.
[needs source, pooled resource]

Resource Source

Scale

Sources have a range of concurrency. Fixed resources have the lower and upper
bounds the same, indicating that there is no way to discard such resources.
However, they start out with none allocated. Sources with non-zero lower bounds
could be preferentially used to fill pool requests.

Provision

Sources need an API call to obtain another resource from the source. Allowing
users to run arbitrary code on the resource as it is obtained will allow
significant flexability with little code overhead.

Discard

Sources need to be able to discard a resource they previously created. While
perhaps a corner case, allowing users to run arbitrary code on the resource
prior to discarding it is symmetrical and that helps predictability.

Local source

Runs commands locally. Possible configuration options:

	Explicit concurrency.

	Override CWD.

	Do a sudo call ?

	Make file copies not copy (e.g. cp -al, or symlink...)

	Can import filesystems by bind mounting or even just running in the right
dir.

SSH source

Runs commands by sshing into a host. Possible configuration options:

	Host to ssh into

	Optional source to layer on? [permits bastion hosts]
Raises the question of shared use of a bastion host - how to avoid locking
other users out when the actual resource being used is behind the bastion
host, while still not permitting the bastion host to be gc’d.

	Number of instances to export ?

Chroot source

Makes chroots. Configuration options:

	command line to instantiate a chroot

	command line to execute a command in a chroot

	control the user to run commands as

	import filesystems by bind mounting

	Layers on a base level source.

	Number of chroots to permit ?

LXC source

Make LXC containers. Same basic options as chroots.

Cloud source

	cloud provider credentials, machine image id.

	SSH private key to use to make connections.

Pool source

A pool backends onto other sources. Configuration:

	One or more sources

	Minimum scale - able to be dialed up higher than the sum of the minimum scale
for the backend sources. (Dialing it lower would have no impact, because the
backends would maintain their own minimums.

Compute Resource

Concurrency

Any given machine, be it virtual or physical, has an intrinsic degree of
concurrency. This matters to users that are scheduling work - for instance, a
test suite that has a natively parallel test runner might want to run one
instance of it per machine, but be spread over several physical machines to get
better concurrency. Something orchestrating runs with that runner would want to
know N(machines) rather than N(cpus) when scheduling work. Conversely, a test
runner that is itself serial and only ever uses one CPU per process might want
to run some M processes per physical machine, where M is the number of actual
cores in the machine.

We can expose the concurrency (ideally the effective cores, but as an
approximation the number of cpu’s the OS sees) to clients of crcache. If we
choose not to expose this, users could just provision single-core resources
everywhere, but that has its own inefficiencies and the more cores machines
have the more getting this right will matter.

Users may want to control this - e.g. to deal with poor CPU topologies so
offering an extension point to override (or perhaps mutate) the auto-detected
value makes sense. OTOH users could just wrap crcache calls.

Running tasks

We need to be able to run tasks on a resource. To do that you need a network
location, username and credentials. We can bundle those all up and offer a
remote shell facility, with minimal loss of generality.

crcache is a choke point on command execution, so it can offer an extension
point both before and after commands are run (and perhaps even wrap the
input and output of commands). Uses for this are to fix up paths, environment
variables, squelch noise at the source. However, most of the same capability
can be done by wrapping crcache itself, so this should be a second-pass
feature.

File handoffs

A common task will be synchronising some local file with the resource, and
retrieving build products post-execution. While anything can be build on the
run-a-task abstraction, offering direct file handling simplifies correctness
for handling of temporary files, and makes debugging considerably easier for
users. In particular, if there are extension points to influence task running,
file transfer done on top of running tasks would be subject to the same side
effects.

Filesytem imports

What sort of imports can this resource utilise?

	rsync

	bind mount

	others in future?

Code layout

One conceptual thing per module, packages for anything where multiple types
are expected (e.g. cr_cache.commands, cr_cache.ui).

Generic driver code should not trigger lots of imports: code dependencies
should be loaded when needed. For example, argument validation uses argument
types that each command can import, so the core code doesn’t need to know about
all types.

The tests for the code in cr_cache.foo.bar is in cr_cache.tests.foo.test_bar.
Interface tests for cr_cache.foo is in cr_cache.tests.foo.test___init__.

Key modules

cache

Responsible for arbitrating use of sources. Takes care to stay within limits,
manage reserved resources etc.

source

Pluggable interface for supplying compute resources. Takes care of making,
discarding, and running commands on compute resources.

ui

User interfaces.

commands

Tasks users can perform.

External integration

The command, ui, parsing etc objects should all be suitable for reuse from
other programs - e.g. to provide a GUI or web status page with pool status.

 Copyright 2012, crcache contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	crcache trunk documentation

Developing crcache

Releases

To do a release:

	Update crcache/__init__.py to the new version.

	Commit, make a signed tag.

	Run ./setup.py sdist upload -s.

	Push the tag and trunk.

Hacking

(See also doc/DESIGN.rst).

The primary repository is https://github.com/rbtcollins/crcache. Please branch
from there and use pull requests to submit changes. Bug tracking is the github
bug tracker.

Coding style

Pep8. Be liberal with pylint. Pragmatism over purity.

Test everything that can be sensibly tested.

Tests

Can be run either with ./setup.py test (which should install the needed
dependencies) or testr run (if you have installed testrepository). If for
some reason setup.py test does not install dependencies, they can be found
by looking in setup.py.

Copyright

Contributions need to be dual licensed (see COPYING), but no copyright
assignment or grants are needed.

 Copyright 2012, crcache contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	crcache trunk documentation

Index

 Copyright 2012, crcache contributors.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		crcache trunk documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, crcache contributors.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

